

Integrating bioenergy and dairy production systems

Jo Smith Agroecological Researcher

CENTRE ELM FARM

© The Organic Research Centr

Silvopasture

Bioenergy and livestock

SRC

Nutrient inputs from manure

Pest control

Provisioning services: increased productivity due to synergistic interactions and use of marginal land. Livestock

Alternative feed resources

Animal welfare: microclimate, behaviour

> BUT: establishment costs? Management? Negative interactions??

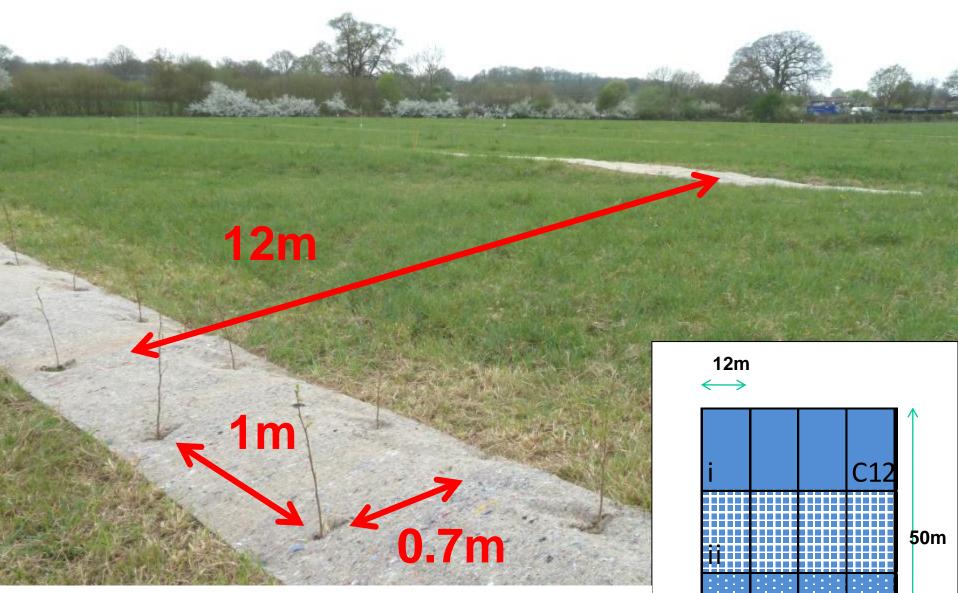
Regulating services: air, water and climate regulation, C storage, biodiversity

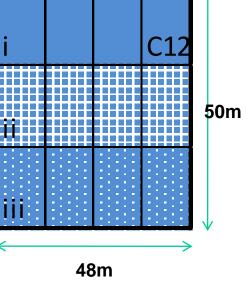
Cultural services: economics – enterprise diversification, reduced feed inputs. On-farm energy production SOLID | Sustainable Organic and Low Input Dairying

FP7 Project: www.solidairy.eu

To assess the viability and multifunctional potential of a novel integrated willow-based bio-energy/organic dairy production system

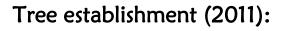
(i) Establishing a new organic silvopastoral system to provide economic and environmental data – Elm Farm, Berkshire

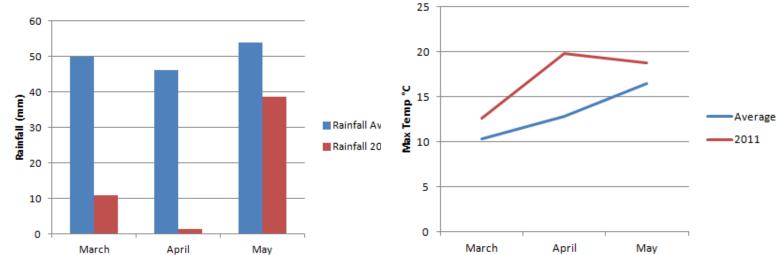

(ii) Assessing an established willow bioenergy system – Wakelyns Agroforestry, Suffolk

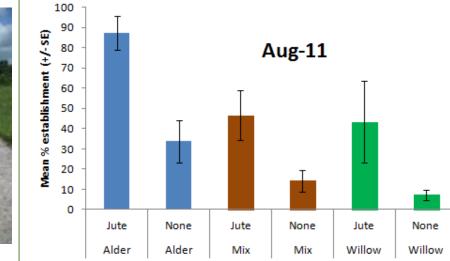

(i) Establishing a new organic silvopastoral system to provide economic and environmental data – Elm Farm, Berkshire

Willow	Alder					
Well developed for SRC bioenergy production (infrastructure, varieties etc)	Coppices well, fast juvenile growth, similar yields to willow (Swedish studies)					
Traditionally used as fodder	Less palatable to livestock and wildlife? Nutritional value lower?					
65-70% organic matter digestibility (similar to lucerne hay)	N-fixing through <i>Frankia alni</i> : 30- 185kg N/ha/yr – transfer to pasture?					
Crude protein: 17% in spring	Crude protein: 18-21% (black alder)					
1 – 6 tonnes ha ⁻¹ yr ⁻¹ of edible dry matter, the equivalent of 0.3-2.5 kg DM/tree (NZ study)	Productivity?					
Contains salicyclic acid – internal parasites?	Medicinal properties of secondary compounds?					
Also used for phytoremediation and biofiltration, craft materials	Can be used for charcoal, pallets, pulpwood					
© The Organic Research Centre						


Split plot design with 3 replicate blocks *Main plot treatment: species choice - willow, common alder, mix, pasture control ***Sub-plot treatment:** weed management






ORGANIC RESEARCH CENTRE

ELM FARM

Parameters

- * Economics of establishment and management
- Productivity growth rates and biomass of SRC and pasture
- Microclimate effects (soil moisture & temp, air temp, humidity, shade, wind speed)
- Biodiversity (vegetation, soil inverts, epigeic inverts, pests and diseases)
- Soil and vegetation nutrients
- C storage (aboveground, soil and roots)

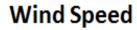
Development

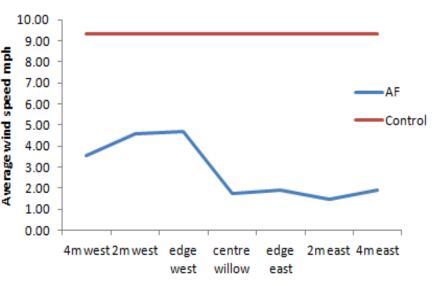
Integration of livestock – management and impacts

Willow alley cropping at Wakelyns

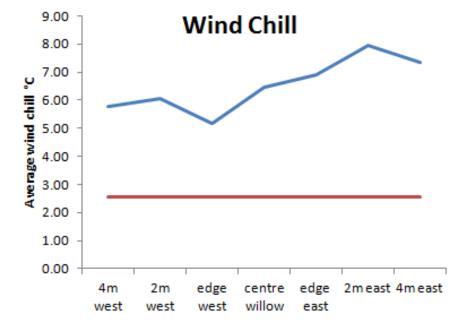
4ha planted in 1998 20% willow Harvested on a 2 yr rotation

~ 6.7 t/ ha AF /year fresh weight

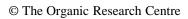

Parameters


Open pasture control under same ley mix

- Microclimate effects: implications for animal welfare
- Feed value: quality (in vitro screening Task 3.1), quantity & availability
- Pilot study of ensiling willow
- Optimising productivity: trade offs between feed provision and bioenergy production



Microclimate data: e.g. April 2012



Implications for animal welfare? *Animal Comfort Index; Temperature Humidity Index?* Implications for pasture productivity?

Centre

Feed Value of Willow

Treatments

- 藻
- Age of re-growth; 1st year vs 2nd year
- Season: late spring vs late summer
- Leaves + stems <8mm diameter</p>
- 🖗 Analysis by MTT, Finland

entre

Feed value

	Literature	First year		Second	Second year		Statisti	Statistical significance	
	Range	Early	Late	Early	Late	SEM	Year	Season	Y*S
n		4	4	4	4				
Dry matter (DM; /kg)									
In DM (g/kg DM)									
Ash	50-78	70.8	72.5	63.6	63.7	2.78	< 0.05	0.76	0.79
Crude protein	90-208	167	127	125	99	6.6	< 0.001	< 0.001	0.27
NDF	358-564	573	492	548	503	6.6	0.31	< 0.001	0.61
ADF	255-382	410	341	395	357	5.3	0.91	< 0.001	< 0.05
Lignin	82-142	184	136	168	135	4.5	< 0.1	< 0.001	0.11
In vitro OM digest.	0.43-0.91	0.405	0.383	0.399	0.369	0.0075	0.21	< 0.01	0.61
ų									

The Org

Crude protein higher in spring and 1st year Lignin higher in spring and 1st year Digestibility low (species/varieties/methods?)

Conclude: Not high value feed! But may have role in providing fibre or as a buffer feed