Trees in European crop fields: determining the trade-offs in profitability and ecosystem regulation

Presentation made by Paul Burgess, Cranfield University at Farm Woodland Forum meeting, Gregynog Conference Centre, 29 June 2005 Trees in European crop fields: determining the trade-offs in profitability and ecosystem regulation

Paul Burgess¹, Anil Graves¹, João Palma², Felix Herzog², Yvonne Reisner², Gerardo Moreno³, Mercedes Bertomeu³, Christian Dupraz⁴, Fabien Liagre⁵, Herman van Keulen⁶, L.D. Incoll⁷, David Pilbeam⁷, and Terry Thomas⁸

¹Cranfield University, Bedfordshire, England; ²FAL, Switzerland;
 ³Extremadura University, Spain, ⁴INRA, Montpellier, France;
 ⁵APCA, Paris, France; ⁶Wageningen University, the Netherlands,
 ⁷ University of Leeds, UK; ⁸BEAM (Wales) Ltd, Anglesey, Wales

Acknowledgements

This research was funded through the European Union 5th Framework through the contract QLK5-2001-00560 and the Swiss Federal Ministry of Science and Technology contract 00.0158.

Outline

- 1. Trees in fields
- 2. Method
- 3. Production
- 4. Profitability
- 5. Ecosystem regulation
- 6. Conclusions

There has been a loss of wooded landscapes over much of Europe...

...trees have become segregated from agriculture...

~60% decline of field trees in England 1980-1998

.. but some farmers have maintained agroforestry systems ...

.. and others have established trees in fields recently

2. Method

How to determine profitability and environmental effects?

Difficulty in waiting 60 years
Relative to arable cropping and forestry

Yield-SAFE: state variables

Tree	Biomass	\boldsymbol{B}_t
	Leaf area	L_t
	Shoot number	N
Crop	Biomass	$\boldsymbol{B}_{\boldsymbol{c}}$
	Leaf area	L_c
	Thermal time	S
Soil	Water content	Ø

Yield-SAFE structure

Plot-SAFE: structure

Farm-SAFE: structure

Description and software

M	icros	oft Ex	cel - C	ору с	of Pla	ot-SA	FEv(03_1 fo	or netwo	rk sites i	and LTS	11 Jan 05	LER_EC	:ol 🏪 📃		3 🖉	20	ا 🔊 🧶	9 _ 5	<u>×</u>
8	Eile	<u>E</u> dit	⊻iew	Ins	ert	For	nat	<u>T</u> ools	<u>D</u> ata	<u>W</u> indow	<u>H</u> elp	Ado <u>b</u> e PD	F			Туре	e a questior	n for help		×
	2	8) 🔁	6	D.	ABC V	Ж		3 - 🝼	l KO + I	ca 🖉 🍕	Σ -		🛍 🚜	100%	- 🝳	-			
	E7		•		fx -	-2														
		А		В			D	Е	F	G	Н		J		К		L	M	N	-
1	Work	sheet	D: Bio	phys	ical c	alcu	latio	ns											36,7	2
2	D1-D2	2 Date	and cli	imate	;						D3 Tree									
		Date		Day	Day of year		Year	Temp	Rad	Preciptation	Tree density	Trees present	Leaf developme		Leaf area per tre		Leaf area index	Fraction light int	Potential growth	
sed	den il.o	deriter						Imp	ort Wea	ther			nt per shoot		ö			rception		
ture ems	•				1110		Year	Temp	Rad	Rain	N.	yest	yesleaf		L,At		LAIt	₫	dBtpot	
							M	:WVE_P	rojectsVEl	JÆU SAFE	EVAnils the	esis\Ch 5 c	3.6		3.4			3.14	3.17	
								(°C)	(MJ m ⁻²)	(mm)	(tree m-2	9	(m2)		(m ² tree ⁻¹)	1	(m ² m ⁻²)	(m ⁻²)	(g tree	5
Des	2 7/2	ent.				1		-2.0 9.8 9.8	1.8 1.8 3.4	2.6	0.0156	1								
Sam.	NIN MAR	k.				3 4		7.4 8.6	3.5 3.2	4.0	0.0156 0.0156	1								
						5 6		9.8 8.2	2.5 3.5	1.6	0.0156	1								
Pagess	epes, T	let .			4	/ soe fo	restr	v data	Vield-	SAFE / F	j 0.0156 Bio-graph	Arable	syste 🖣						•	Ē
50 A.A					1			,				A		 C						1.1

Meta JAPE a preison by remain an apply principler is a horizon.

1 Yield-SAFE: a parameter-sparse process-based

2 dynamic model for predicting resource capture.

- 3 growth and production in agroforestry systems
- 4

3 Weph waster West', Zan Diseases', Peri Durger, 'And Ossar', Deal Piller

4 L.D. Incolf, Khos Hatukar¹⁴, Harina Hayw¹⁴, Ical Pappan¹⁴, Haman wa

7 Sireha', Me Palea, & Christian Denois'

- 表

Y. Waganaga Garrano, Gaup Cop & West Kalaga P O San 430, 6740 /K Waganaga, To

19 Heaterlands, Wagmangen Ginwame, Spanner & Gaussi Gaussi Gauss, P.O. Sto. 43, 6500 AA,

 $\Omega=$ Waynayes, Tee Makelanis, Comfeld Ganwara, Edux, MOH 407, Soliaidaes, Gand-

12 Kongdon, Kaland of Backgy, Glovenne of Leals, Leads LS2 917 Second Regulars, Wegenergen

13 University, Grap Plan Protocome Service, P.O. Box 480, 8200-48, Waynington, Bey Publishedo,

34 - Vigourup-1542. Radiobale Sous Paleod Research Souss (in Agentalogs and Agenticae)

- 13 Real-studies and 191, OSBA4 Surah, Suranshind, Placess Paranel dell'intendet Agrammages,
- 15 UNIX Syndam (reliables Mildon solves v. Toppens, 2, Plan Value Mill Margellon, Press

17

Potential poplar growth in the Atlantic region simulated with Yield-SAFE compared to data from yield tables

Calibrated output: wheat yield

Total wheat biomass predictions from Yield-SAFE calibrated to output from the comprehensive crop growth model STICS

Validation: UK Silvoarable Network

Site calibration for Silsoe

The model was calibrated for tree-only and crop-only reference yields by modifying the transpiration coefficient and the harvest index

	Poplar	Wheat
Timber yield (m ³ tree ⁻¹) (30 years)	2.4	-
Crop yield (t ha ⁻¹ a ⁻¹)	-	8.2
Transpiration coefficient (m ³ kg ⁻¹)	0.42	0.32
Harvest index (%)	49	51

Validation: relative crop yield with poplar agroforestry in the UK

Conclusions: models

- Validated daily-time-step biophysical model of the yields of arable, silvoarable and forestry systems over a tree rotation (up to 60 years)
- 2. Lack of data describing tree growth at low stand densities constrained model validation
- 3. Start simple

3. Production

Predicted effect of tree stand density on timber production per tree

Predicted effect of tree stand density on timber production per hectare

Predicted effect of tree stand density on relative yields of a wheat/wheat/oilseed rotation

Champlitte

Effect of tree density on relative productivity

Production determined for selected locations, tree and crop species in Europe

Integrating trees and crops can result in improved site productivity

4. Profitability

Effect of system on profitability

Profitability, with grants, of arable and an agroforestry system (113 trees/ha) at Champlitte

Agroforestry €434 ha⁻¹ a⁻¹

Arable €473 ha⁻¹ a⁻¹

Champlitte

Farm-scale analysis (2005 grants; 4% discount rate)

Agroforestry more

Agroforestry more profitable than forestry profitable than agriculture

Conclusions: production and economics

Agroforestry results in greater site productivity than growing trees and crops separately

In France, agroforestry

- is often the most profitable way of establishing walnut, cherry and poplar in arable areas
- with walnut and poplar is competitive with arable monocultures
- with current grants, cherry is less profitable than arable systems

5. Environmental regulation

Soil erosion

- Groundwater recharge
- Nitrogen leaching
- Carbon sequestration

Predicted effect of agroforestry and contours on soil erosion at Champlitte

Predicted effect of agroforestry on groundwater recharge at Champlitte

Predicted effect of agroforestry on nitrogen leaching at Champlitte

Predicted carbon sequestration over 60 years using wild cherry at Champlitte

Conclusions: Environment

A biophysical model was used to predict key environmental effects of an arable monoculture and agroforestry at different tree densities, however validation is required

As tree density increased, predicted: - soil erosion decreased - groundwater recharge decreased - nitrogen leaching decreased - carbon sequestration increased

Trade-offs in profitability and environmental regulations

Reduce nitrates

Reduced flooding Reduced soil loss Agroforestry €434 ha⁻¹ a⁻¹

Groundwater recharge Arable €473 ha⁻¹ a⁻¹

Trade-offs in profitability and environmental regulations

C sequestration Reduce nitrates Reduced flooding Reduced soil loss Agroforestry €434 ha⁻¹ a⁻¹

Groundwater recharge Arable €473 ha⁻¹ a⁻¹

Trade-offs in profitability and environmental regulations

C sequestration Reduce nitrates Reduced flooding Reduced soil loss Agroforestry €434 ha⁻¹ a⁻¹

Groundwater recharge Arable €473 ha⁻¹ a⁻¹

Conclusions: determining trade-offs

Although agroforestry may not be the most profitable option to an individual farmer, it may still be the best option for society.

A bio-economic model, linked to some environmental models, can be used to compare key economic and environmental effects of arable, forestry and agroforestry systems