Organic Agroforestry: eco-functional intensification

Martin Wolfe

The Organic Research Centre and Wakelyns Agroforestry, Suffolk

© The Organic Research Centre

- this is what we survive by - the natural world – or, as it is now frequently termed -

Ecosystem Services

<u>Provisioning</u> (food and water, materials, energy);

<u>Regulating</u> (carbon sequestration, climate regulation, decomposition and detoxification, purification of water and air, pests and diseases, pollination);

<u>Supporting</u> (nutrient dispersal and cycling, seed dispersal, primary production);

<u>Cultural</u> (spiritual, health and recreational benefits)

Unifying concepts in ecology (Loreau 2010)

There are positive correlations between:

A) DIVERSITY AND STABILITY

(e.g. wheat populations)

B) DIVERSITY AND PRODUCTIVITY

(e.g. large-scale natural grassland projects)

BIODEPTH project: biomass and diversity at eight European sites

Feed-back systems

biodiversity species richness, composition, interactions, ...

ecosystem functioning productivity, biomass, nutrient cycling, ...

abiotic environment temperature, rainfall, soil fertility, ...

Loreau 2010

Ecological activity....

.... is at a maximum in woodland edge

So, why not farm just WOODLAND EDGE???

© The Organic Research Centre

Centre The Organic Research ORGANIC RESEARCH CENTRE

The Wakelyns Systems

HARDWOODS

a) ash, hornbeam, Italian alder, oak, smallleaved lime, sycamore, wild cherry

b) as above with dispersed apple

FRUIT AND NUT

- a) range of topfruit, some under-storey fruit bushes
- b) walnut and plum varieties

COPPICE SYSTEMS

a) mixture of willow varietiesb) outcross hazel population

ELM FARM

Winter wheat and hazel in 2006

Centre The Organic Research

Clover ley in 2008

Centre The Organic Research

Potato crop in 2009

Advantages of tree integration

- Achieves ecosystem intimacy
- Carbon capture and storage
- Ammonia abatement
- Nutrient cycling
- Produces food, fuel and fibre
- Biodiversity
- Crop and animal protection and nutrition
- Also protects soil, water and air
- Employment opportunities; pension scheme

Inputs needed:

Soil, sun, air, water – and some labour

Centre The Organic Research ORGANIC RESEARCH CENTRE

Some willow data.....

Five component mixture – planted as pairs of rows:

75 cm between rows

90 cm within rows

44 t fresh wt/ha/2years Equals: 11 t dry wt/ha/year

- which gives an LER of about 1.4
- but an FER of about 2.2 (using heating oil price equivalents)

The birds and the bees.....

BIRDS: on 22ha, 45-50 species

BEES: 40,000/ha on legume leys

NB selection of farmland AND woodland types

© The Organic Research Centre

Plant succession to climax vegetation

Centre The Organic Research ORGANIC RESEARCH CENTRE ELM FARM

Within-crop diversity: wheat populations

POSITIVE

- <u>Capacity</u>: more phenotypic and genotypic variation
- <u>Complementation</u>: different genotypes complement each other
- <u>Compensation</u>: if some fail, others take their place <u>Change</u>: evolutionary shifts
 - in response to selection

NEGATIVE

<u>Competition</u>: may work against the four 'Cs' above.

ELM FARM

Project 3: SOLIBAM

The SOLIBAM diagram (Strategies for Organic and Low-input Integrated Breeding and Management) – an EU project started in March 2010:

Wheat populations and diverse hardwood trees

- and the importance of perenniality

© The Organic Research Centre

Advantages of long-term perennial grassland versus annual wheat

A. Above Ground

- Higher N yield, no inputs
- Perennials dominant, high diversity
- Pollinators, herbivores, detrivores more, more diverse

B. <u>Below Ground</u>

- Roots longer, deeper
- Food webs more diverse and structured
- Soil: more C and N, better structure, less leaching
- Better water quality (reduced NO3-N load)

(Glover et al., 2010)

ELM FARM

Root biomass below native perennial prairie versus crop land in Kansas (Culman et al. 2010)

Fig. 1. Root biomass in the Niles grassland (closed circles) and cropland (open circles) site at 0-20 cm, 20-40 cm, 4-60 cm, 60-80 cm, and 80-100 cm.