Above-ground biomass carbon stocks and annual sequestration rates of a poplar silvoarable system

Jyoti S.Narsude (gyjsn@leeds.ac.uk) Supervisors - Pippa Chapman, Joseph Holden School of Geography, University of Leeds

Introduction

• Agroforestry practices are widely encouraged for climate change mitigation and there is an urgent need to assess their contribution to national 'net-zero' targets.

- However, poplar silvoarable systesms can efficiently sequester more C in agriculture land.
- The aim of this study was to determine the above-ground biomass (AGB) carbon (C) stock and annual C sequestration rate for four poplar hybrids planted in 1992 at a density of 166 trees per hectare in a silvoarable agroforestry systems.

Result

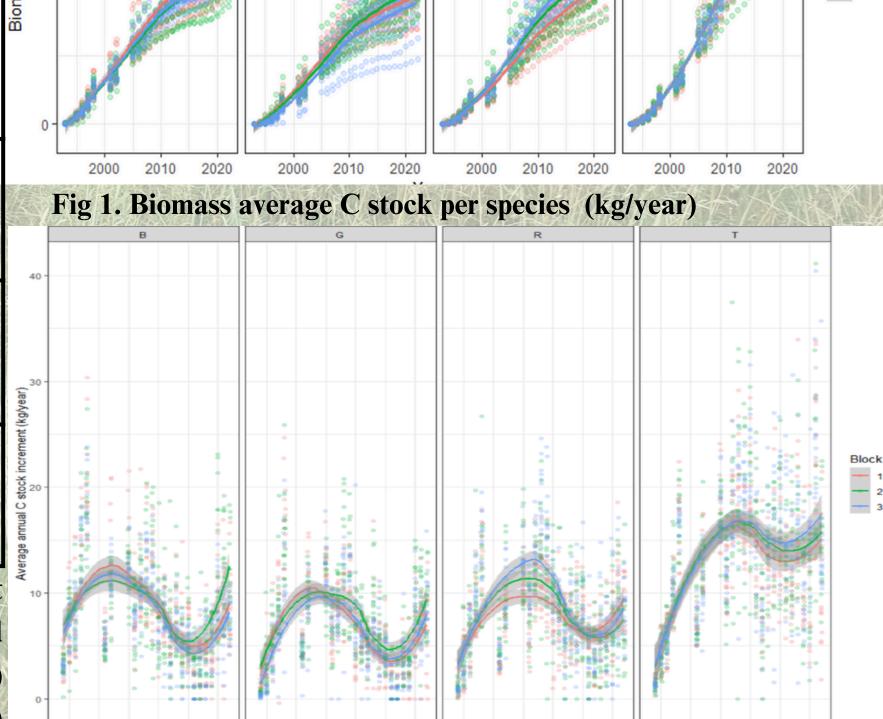
Table 1. Annual C sequestration rate over 30 years

	Average C stock	Average annual	400 (by)
Poplar hybrids	per species in	C sequestration	stock
	year 2022 (t C/ha)	rate (t C/ha/yr)	O sass 200

Methods

UNIVERSITY OF LEEDS

A species-specific allometric equation was used to calculate AGB using 30 years of diameter at breast height (dbh) measurements and converted to AGB C stock by assuming a C content of 50%.


Т

Block

Robusta	38.69	1.28	Bi
Beaupre	40.31	1.34	
Trichobel	63.44	2.11	kgývear)
Gibecq	32.54	1.08	rage annual C stock increment (kg/year)

The AGB C stock was significantly different between hybrids (Fig 1) and by 2022 Trichobel had the greatest mean AGB C stock (63.44 t C/ha/yr) and Gibecq the lowest AGB C stock (32.54 t C/ha) (Table 1).

Over the 30 year period, the average annual C sequestration rate by AGB varied between poplar hybrids (Table 1). However, Figure 2 shows that annual rates of C sequestration varied greatly over time for all hybrids. **Discussion**

G

Fig.2. Average C increment per species (kg/year) Our results are on the low side of the estimated annual C sequestration rate of agroforestry in temperate zones by the European Agroforestry Federation of 1- 4 tonnes C/yr/ha for trees planted at a density of 50-100 trees/ha.

Future research will explore the impact of variation in annual rainfall and temperature on annual C sequestration rates.