

Bill Bealey & Mark Sutton Centre for Ecology & Hydrology

Agroforestry Systems for Ammonia Abatement (SAMBA)

Ammonia feeds the world

Global N_r production and dispersion

Human N_r Production: (Tg yr⁻¹) 1860: 15 1995: 156 2005: 191

2005 sources:

Haber Bosch: 121 Biol N fixn: 45 NOx emission: 25

Galloway et al. 2008 Science

Ammonia Sources

25,939,838 Layers in the UK (2008) (38% free-range) 109,858,933 Broilers

420,588 sows in the UK (2008) 2,993,583 fatteners in the UK (2008) (various weights)

Animal manures the main source of ammonia

Plus 10% from fertilizers + 10% from other sources

The Nitrogen Cascade

Ammonia Impacts on biodiversity Inc. Cladonia uncialis

Bog moss Sphagnum imbricatum

FRAME MODEL & UK NETWORK

THE SUCCESS OF EUROPEAN AMMONIA POLICIES

Social damage of nitrogen pollution in EU27 in 2000

European Nitrogen Assessment (2011) Plus UNECE CLRTAP-WGSR-47 documents

Regulation in the UK

- IPPC Directive Integrated Pollution Prevention Control
- NECD National Emission Ceiling Directive (297kt NH₃)
- The Habitats Directive
- CLTRP Convention on Long-Range
 Transboundary Pollution

SAMBA Objectives

- To assess the potential of the different abatement measures:
 - a) Re-capture & increased dispersion by shelterbelts and similar woodland features: quantification >> measurements & modelling
 - b) Animals under trees (silvo-pasture): demonstrate practical feasibility of ammonia abatement through case studies

Four-way benefit of trees for ammonia mitigation

4. Recapture of NH_3 45% from livestock under trees

Daniela Famulari

C. Braban, M. Coyle, C. Helfter, E. Grigorova, E. Nemitz, S. Leeson, M.A. Sutton, S. Y. Tang, M. Twigg, M. Theobald, A. White *Centre for Ecology & Hydrology*

A. Robertson *Birmingham University*

Agro-forestry experiments

QUANTIFYING NH₃ RECAPTURE BY TREE BELTS

- 28 Picea Abies (2m tall) on 5 rows, straw bales as floor
- 16 Growth lights for photosynthetic activity
- Variable temperature and RH, measured continuously

QUANTIFYING NH₃ RECAPTURE BY TREE BELTS

- Normalised concentrations of $\rm NH_3$ and $\rm CH_4$ at increasing distances from the source
- Factors of NH₃ recapture range between 2% and 18%

Centre for Ecology & Hydrology

NH₃ ABATEMENT BY SILVO-PASTORAL PRACTICES

2 transects at each farm: one wooded downwind one clear

Measurements made July 2009 – January 2010

Centre for Ecology & Hydrology NATURAL ENVIRONMENT RESEARCH COUNCIL

Noble Foods: Din Moss Farm

Noble Foods: Freuchie Mill Farm

FAI Farm: With thanks to Paul Cook. Janet Coleman, Mike Colley and other FAI staff

PINE experiment site. Houses cycled every 100 days.

Open: House JA9 Downwind Transect: 7, 15, 30, 50, 77m

Empty

Centre for Ecology & Hydrology NATURAL ENVIRONMENT RESEARCH COUNCIL Woodland: House JA8 Downwind Transect: 2.5, 5, 10, 20, 30, 50m

Results from full measurement period: Wytham

Fife Woodland Chicken Farms: Din

Poultry houses in pre-existing conifer woodland: two contrasting transects

Din Moss conifer Transect

Comparison between open and wooded transect difficult due to complex background (see "background" measurements on LHS of graph)

 Wooded transect ammonia concentration is at regional background level at > 250 m compared with open transect which is still ~ 10 mg..m-3

Detailed modelling of site will allow recapture and dispersion effect to be seen more clearly.

Benjamin Loubet

French National Institute for Agricultural Research **Bill Bealey** Centre for Ecology & Hydrology

Modelling the recapture efficiency of farm woodland structures

MODDAS & AQUILON MODELS - General Scheme

General scheme of the woodland and source geometry that will be tested.

MODDAS - **MO**del of **D**ispersion and **D**eposition of **A**mmonia over the **S**hort-range in two dimensions AQUILON - is a turbulence model designed for within canopy transfer (*Foudhil et al 2006*)

LAD – Leaf Area Density

- (LAI Leaf Area Index)
- h height
- X width of canopy
- Xs –source width
- Q source strength

Trees characteristics - LAD

SCENARIO 1: SLURRY LAGOON/HOUSING

NATURAL ENVIRONMENT RESEARCH COUNCIL

SCENARIO 2: CHICKENS UNDER TREES

Ecology & Hydrology ATURAL ENVIRONMENT RESEARCH COUNCIL

HOUSING SCENARIO & RESULTS

						Back-					% deposit ed	% deposit	% deposit
		main				stop		Canopy		%	before	ed in	ed in
		canopy		Height	LAD	width		height	Source (kg	depo	main	main	back-
Model run	design	width	LAI	(m)	profile	(m)	LAI	(m)	NH3-N)	sited	canopy	canopy	stop
housing_1	symmetrical	30	6	10	0	0	-	-	300	16%	2%	14%	0%
housing_4	assymmetrical	30	6	10	0	0	-	-	300	17%	0%	17%	0%
housing_13	assymmetrical	25	3	10	10	5	6	10	300	12%	0%	9%	2%
housing_15	assymmetrical	25	3	10	2	25	6	10	300	16%	0%	5%	11%
housing_16	assymmetrical	25	3	10	2	50	6	10	300	25%	0%	5%	20%
housing_17_2	assymmetrical	50	3	10	10	50	6	10	300	27%	0%	15%	12%

Centre for Ecology & Hydrology

NATURAL ENVIRONMENT RESEARCH COUNCIL

CHICKENS UNDER TREES SCENARIO & RESULTS

Model run	design	main canopy width (m)	LAI	height (m)	LAD profile	Back- stop width (m)	LAI	Canopy height (m)	Source (kg NH3-N)	% depo sited	% deposite d before main canopy	% deposite d in main canopy	% deposite d in back- stop
understorey_1	symmetrical	100	3	10	0	0	-	-	625	15%	0%	15%	0%
understorey_3	symmetrical	100	3	10	0	10	6	10	625	20%	0%	17%	4%
understorey_4	symmetrical	100	3	10	0	25	6	10	625	28%	0%	20%	8%
understorey 5	symmetrical	100	3	10	0	50	6	10	625	37%	0%	25%	13%
understorey 7	symmetrical	100	6	10	0	50	6	10	625	60%	0%	50%	9%
understorey_8	symmetrical	100	6	10	1	50	6	10	625	49%	0%	45%	4%

Concentration fields

Concentration field in "housing" runs 1 (16%), 4 (17%) and 17 (27%).

Concentration field in "chickenunderstorey" with varying LAIs runs 6 LAI1 (22%) and 7 LAI 6 (60%) due to the very small level of turbulence and wind speed in the canopy

Modelling Conclusions

- Results indicate
 - LAI and LAD play an important role in recapture efficiencies
 - 20% recapture potential for housing/lagoon with trees downwind (25m main canopy & 25m backstop)
 - 45% recapture for understorey livestock (100m main canopy & 25m backstop)

Profitability/cost implications for farmers Daniel L Sandars

Department for Environment Food and Rural Affairs

Homepage > Science and Research Projects > Science Search > \$

Science and Research Projects

Return to Science Search homepage Return to Project List

Agroforestry systems for ammonia abate

Description

www.cranfield.ac.uk

Cost Centres Over view

- Obtaining the land
- Ground preparation
- Planting
- Staking & guarding the trees and or perimeter fencing
- Fertilising & spraying for weed control first 5 years
- Routine maintenance activities
 - brashing, thinning, hedge trimming
- Managerial oversight

Income streams

- Woodland Grant Scheme (England)
 - Broadleaves £1800/ha and/or Conifers £1200/ha with 80% payable on establishment and 30% 5 years later
- Farm Woodland Payment (England)
 - £300/ha per annum for the first 15 years –ex arable AAPS land
- Single Farm Payment
 - £244/ha per annum

Timber sales

- Standing broadleaves
 - Yield 2.3 m³/annum ≈ 0.1-0.14 m³ per tree @ 40 years
 ≈ £10 m³
- Standing conifers
 - Yield 5.7 m³/annum ≈ 0.1-0.3 m³ per tree @ 40 years ≈ £10 m³
- NB: harvesting assumes a continuous cycle of thinning and renewal from 40 years –not clear felling at maturity. Shrub & hedge components are assumed managed as part of maintenance costs

Tangible environmental benefits

- Carbon sequestration, £ 25/tCO₂e
 - The above ground biomass represents a significant store of carbon over annual arable.
 - From year 40 we assume that this is managed at equilibrium – no net carbon sequestration
- Ammonia recapture, £1840/tNH₃
 - We assume that the canopy –recapture efficiency grows linearly to achieve maximum annual recapture from year 40

1 ha woody belt overall costs and benefits, £k/ha

Assumes 2* 50,000 place layer units shielded with a downwind woody belt with a 25m backstop zone (1ha total area)

Discounted Inco	ome	Discounted Expenses		
Woodland grant	£ 1.4	Ground preparation	£0.1	
Farm woodland payment	£ 3.5	Fertilising	£0.2	
Single farm payment	£ 7.3	Spraying	£0.3	
NH3 abatement	£ 92	Perimeter fencing	£ 6.4	
C sequestration	£ 5.7	Planting costs	£ 4.8	
Timber Income	£ 5	Managerial oversight	£0.8	
		Backstop maintenance	£0.2	
		Brashing/ thinning	£ 1	
		Opportunity Cost	£ 18	
TOTAL	£ 115		£ 32	

Internal Rate of Return 15%

Woodland chickens + trees costs and benefits, £k/ha

Extra 0.8 ha of broadleaved in the paddock + 25m downwind backstop –total 1.675 ha new trees for 2500 layer-unit

Discounted Inco	me	Discounted Expenses		
Woodland grant	£ 2.5	Ground preparation	£0.2	
Farm woodland payment	£ 5.8	Fertilising	£0.4	
Single farm payment	£ 6.3	Spraying	£0.6	
NH3 abatement	£ 5.2	Perimeter fencing	£ 3.0	
C sequestration	£ 9.3	Planting costs	£ 7.9	
Timber Income	£ 9.2	Managerial oversight	£1.3	
		Backstop maintenance	£0.4	
		Brashing/ thinning	£ 1.7	
		Opportunity Cost	£ 15	
TOTAL	£ 38		£ 21	

Internal Rate of Return 6.9%

Bill Bealey Centre for Ecology & Hydrology Peter Levy Centre for Ecology & Hydrology

Carbon storage and woodfuel potentials

Carbon Stocks - Forests Facts

- Forest ecosystems make an important contribution to the global carbon budget
- Potential to sequester carbon in wood and soil <u>but</u> potential to release it if forests are cleared
- Forests and woodlands in the UK contain around 150 million tonnes of carbon, and remove about 4 million tonnes of carbon from the atmosphere every year
- Total UK emissions of around 150 million tonnes of carbon a year
- Soil is the largest carbon reservoir in the UK, which stores about 6 billion tonnes of carbon.

UK Upscaling – Land use

- UK ~243,610 square kilometres
- 11% forested -> 26,800 km² or 2,680,000 ha
- Agriculture land 18 million hectares (~3/4 grass or rough grass, bare fallow)
- Farm Woodlands:

	2008 population (birds)	birds per ha	land to be converted to forest (ha)
Layers	25,939,838	2,500	10,376
Broilers	109,858,933	4,000	27,465

Carbon Stocks

- If stocks of carbon are increased by afforestation or reforestation additional CO₂ is removed from the atmosphere and stored in the tree biomass.
- By substituting for fossil fuels land used for woodfuel (bioenergy) production can provide significant emissions reductions.
- Woodfuel can be used for electricity and heat production

1. Woodfuel Potential - Electricity

	Wood	Gas-fired	Coal
on Full-life cycle emissions kg CO ₂ /Mwh	40-250	440	1007

This is the full life cycle of the wood production, land-use change, and transport etc.

Comparison of emissions from biomass and gasfired power stations (EA 2009)

2. Woodfuel Potential – Domestic Heating

 For every tonne of woodfuel you can save 0.6 tonnes of coal (measured as kWh/tonne)

	dry mass (kg)	GJ	kWh	kWh/tonne
Wood fuel	550*	5.5	1527	2777
Household coal	1000	16.4	4554	4554

*every tonne of wood, you get around 550kg of dry matter (i.e. you lose nearly 50% to water loss) versus 1000kg of household coal. (table adapted from Keighley, 1996)

	Beech YC6	Sitka YC12	Total Timber	Beech YC6	Sitka YC12	Total Thinning	Total Timber
Year	trees m3/ha	trees m3/ha	Volume m3/ha	thinnings m3/ha	thinings m3/ha	Volume m3/ha	Volume
40	94	231	325	54	252	306	631
Scenario 1 (0.5 ha)	12	. 87	98	41	95	135	234
Scenario 2 (1.875 ha)	94	202	296	54	221	275	571
75	233	465	698	201	383	584	1282
Scenario 1 (0.5 ha)	29	174	204	87	144	231	434
Scenario 2 (1.875 ha)	233	407	640	201	335	536	1176

Centre for cology & Hydrology atural environment research council Wood as fuel: a guide to burning wood efficiently by G. Keighley. Forestry Commission, Edinburgh, 1996.

Carbon Credits & Offsetting

- By offsetting emissions the full effects of those emissions can be mitigated by reductions elsewhere in the world.
- The Shadow Price of Carbon (SPC) in 2007 used £93 per tonne carbon sequestered (£25 per tonne CO₂e) (drawn from the Stern Review on the Economics of Climate Change)
- Revised 'Carbon Valuation' in 2009 for non EU Emissions Trading System sectors to a price of £60 per tonne CO₂e in 2020 (Carbon valuation in UK policy appraisal: a revised approach. DECC 2009)

Carbon Credits & Offsetting

Based on the carbon stock model (CFLOW) we have get the following total carbon for each scenario and potential carbon credits:

- After 40 years Scenario 1 (housing with trees) : 220 tonnes C (~£13k)
- After 90 years Scenario 1 (housing with trees) : 275 tonnes C (~£16.5k)
- After 40 years Scenario 2 (housing and free-range under) : 733 tonnes C (~£44k)
- After 90 years Scenario 2 (housing and free-range under) : 1155 tonnes C (~£69k)

Biodiversity and gene flow in the landscape

We can influence the way genetic diversity moves in the landscape by managing for different tree distributions.

Key Messages

- Ammonia emissions have increased substantially over 20th C facing major mitigation challenges
- Ammonia impacts occur in the rural environment, so that landscape structure has great capability to buffer these effects
- Livestock agroforestry systems have an important role to play in reducing ammonia emissions and effects.
- Woodfuel
 - could provide a significant role in achieving the UK's emission reduction targets for CO2
 - is 4 times more efficient than coal based on the release of kg CO2 per MWh of delivered energy (x2 for gas)
- Farm Woodlands & Carbon
 - maintains the viability of agricultural woodlands and forests, preserves them for future generations
 - provides rural employment & diversification
 - acts as a pool for genetic diversity in the landscape

Agro-Forestry – Everyone's a

- Ammonia Abatement (& meeting regulations)
- Protection of Conservation sites
- Carbon Sequestration
- Fossil Fuel substitution using Wood Fuel
- Improved welfare of animals for outside systems
- Potential revenues for farmers and industry
- Screening of installations
- Improved flooding protection

Thank You

Key Facts -Pigs

- Domesticated pig used intensively in Roman times, and during the Medieval period pigs were kept for long periods in forests feeding on acorns, beech nuts etc.
- Today pigs are used for woodland management clearing bracken and brambles, & aiding regeneration of seeds
- Trees for shelter and shade
- Meat premium for 'woodland-reared' pork
- A survey of Assured British Pig farmers found 74% of the farms housed sows indoors for breeding and the remaining 26% outdoors (Fowler, 2008).
- 420,588 sows in the UK (2008)
- 2,993,583 fatteners in the UK (2008) (various weights)

Fowler, T. (2008) The structure of the UK pig industry. British Pig Executive, November 2008.

Key Facts - Chickens

- Chickens natural range is the forests of South East Asia (Red Junglefowl) (Collias & Collias, 1967)
- Trees are multifunctional providing:
 - Shelter from wind and rain
 - Cover from predators
 - Shade from sun
- Trees encourage ranging (Dawkins et al. 2003)
- Free-range 'woodland-reared' poultry attract a premium (eggs & meat)
- 25,939,838 Layers in the UK (2008) (38% free-range)
- 109,858,933 Broilers

N. E. Collias and E. C. Collias, A field study of the red jungle fowl in North Central India. Condor 69 (1967), pp. 360–386
 M.S. Dawkins, P. Cook, M. Whittingham, K. Mansell and A. Harper, What makes free-range broilers range? In situ measurement of habitat preference, Animal Behav. 66 (2003), pp. 151–160. ,4

Trends in UK egg production systems

Changes in egg production systems 1946-2008, % of eggs

Year	Cage systems	Barn systems	Free range
1946	-	-	98
1951	8	12	80
1956	15	40	45
1963	27	56	17
1966	67	25	8
1976	94	2	4
1980	95	4	1
1986	93	2	5
1990	85	3	12
1996	86	3	11
2008	58	4	38

FAWC 1998 and other sources